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Introduction

Our society is currently entering a new
phase in which gigabytes of’ information
are becoming readily available for explo-
ration over academic networks, digital
libraries, and commercial information
services as well as in proprietary com-
mercial and governmental databases.
This important technological develop-
ment presents a substantial challenge, as
future intelligent systems must be able
to store very large streams of data, sum-
marize and index this data using concise
and efficient models, and subsequently
perform very efficient retrieval and rea-
soning in response to real-time queries
and updates. We informally refer to this
challenging task as reasoning from data.

Most previous AI research and applica-
tions have concentrated on relatively
simple operations, for example, highly
constrained queries on relatively static,
immutable systems of knowledge such as
mathematics, chess, and hardware com-
ponents inventories, where it is possible
to abstract rules that can be viewed as
true and valid. There are many other
domains in which data changes more or
less rapidly and in which abstract truths
are at best temporary or contingent, for
example, robot environments, software
environments, demographic databases
and public-health data, ecological and
economics (ecosystems, chemical pro-
cesses, marketing and point-of-sale

databases, financial time series, and
video and text databases. In addition,
these domains are associated with a de-
mand for very fast response to unantici-
pated queries and continuous updates
over uncertain, dynamic, interactive, and
rapidly changing environments.

These domains present a challenge for
purely symbolic, rule-based approaches
to AI. For instance, it appears to be diffi-
cult to give a formal logical specification
of concepts such as an important elec-
tronic message, a fair scheduler, an ur-
gent phone call, a good travel package to
Hawaii, an intriguing new paper about
Bayesian reasoning, a high-risk car, a
good real-estate investment, or an inter-
esting economic trend.

Statistical decision theory [Pearl 1988]
provides a useful framework to model
adaptive intelligent agents in stochastic
and rapidly evolving domains. Moreover,
it provides precise criteria (loss func-
tions, expected utility) to evaluate the
performance of such agents. i30w-
ever, when the environment is large, the
process of fitting good models (finding
maximum u posterior models or even
maximum likelihood models) to data gen-
erated by the environment is typically
computationally intractable. When the
envwonment is small, we often have
trouble getting sufficient statistics. Thus
the models we can devise effectively are
rarely accurate, regardless of the size of
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the environment. Finally, equally dis-
turbing is the fact that reasoning with
general probabilistic models is in-
tractable.

In this review we discuss a probabilis-
tic (statistical) framework for memory-
based reasoning (MBR) that marries the
strengths of knowledge representation
using probabilistic models and the com-
putational advantages of case-based rea-
soning. We also argue for the importance
of MBR as a paradigm for building mod-
ern intelligent applications in general.
This paradigm has been successfully ap-
plied to information retrieval, robotics,
classification, software agents, computa-
tional biology, and a number of other
tasks.

Our main goals for MBR are (1) to
approximate computationally efficient
decision-theoretical intelligent agents in
highly dynamic stochastic environments,
and (2) to shift the burden from the slow
and costly effort of hand-coding appli-
cations to the building of largely au-
tonomous adaptive systems supported by
rapidly decreasing-cost technologies such
as powerful PCs, very large associative
memories, and massively parallel and
distributed parallel architectures.

Memory-Based Reasoning

The M13R approach attempts to combine
the strengths of case-based reasoning

(CBR) [Kolodner 1993] and probabilistic
reasoning [Pearl 1988]. In the first phase,
MBR procedures analyze data using rela-
tively efficient algorithms in order to
obtain a rough model of what the envi-
ronment might look like. The model is
subsequently used to define an adaptive
model-based geodesic (distance metric) on
the domain that in turn induces a trans-
formation on instances in the original
data space. The new transformed space
can then be indexed using automated re-
cursive partitioning methods over real-
valued attribute spaces. Given a query,
MBR retrieves a set of relevant instances

(as judged by the rough model) and then
uses local modeling techniques that in-
terpolate the answer to the query on only
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a relatively small set of nearby (relevant)
instances. Consequently, MBR proce-
dures can use sophisticated (computa-
tionally intensive) local models.

The principal steps of MBR are out-
lined in the following:

—The user specifies a set of features
that should be tracked by observing
the environment (database). The user
also specifies a set of probabilistic as-
sumptions used to generate models

(e.g., priors, independence assump-
tions specified as Bayes networks; see
Pearl [1988]).

—The MBR agent incrementally gener-
ates a rough probabilistic model of the
environment, The model may contain
new hidden variables.

—The probabilistic model is used to in-
duce an adaptive distance metric on
the domain that induces an explicit
transformation ( MBR transform ) on
the static parts of data. Thus each data
instance is transformed to a new in-
stance that may include new at-
tributes (e.g., hidden variables).

—A new, more efficient representation is
mechanically derived in the trans-
formed space.

—Local probabilistic models are learned
over small neighborhoods. A local
model is learned lazily only in re-
sponse to a query. That is, once a spe-
cific data point is accessed during
retrieval, MBR retrieves the most
relevant set of instances to the query.
It then performs local learning on this
set, thereby producing a local model
that is used to answer the specific
query. Local modeling can be per-
formed with locally weighted regres-
sion, piecewise linear separators,
propositional formulae, or other learn-
ing methods.

—The local models are retained in
short-term temporary memories and
are cached if the number of queries to
a given region is large.

The MBR hypothesis suggests that we
not associate a static atomic symbol with
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an event. Each event is dynamically (in-
crementally’) defined as an MBR-vector
in a real-value space. For instance, Stan-
fill and Waltz [1986] and several later
papers (e.g., Cost and Salzberg [19931,
Rachlin et al. [1994], and Zhang et al.
[1992]) assume conditional independence
of features given a partitioning of the
domain into classes. This simple proba-
bilistic model (a two-layer causal tree
[Pearl 1988]) induces a transformation
that maps a symbol A associated with XJ
to a discrete probability distribution

CPl,pz>...,@. ) where p is the probabil-
ity of the Zth class given XJ = A. In
planning domains, a given symbol is
transformed into vector probabilities of
accomplishing a set of tasks. Other
transformations involving probabilistic
entities such as mutual information

(cross entropy with some event), log-like-
lihood ratios, and hidden-variables have
been investigated by the authors.

MBR obviously admits an “embarras-
singly parallel” low-communication map-
ping to parallel and distributed systems
and has been implemented successfully
on a number of platforms. Alternatively,
MBR can utilize data structures for asso-
ciative retrieval (such as KD-trees or R-
trees) that retrieve points in expected
logarithmic time.

Discussion

Traditional AI systems are based on rea-
sonable and intuitively appealing princi-
ples that have resulted in numerous
successful practical demonstrations. De-
spite their apparent differences, most
conventional symbolic AI systems use
symbolic pattern matching over rigid
symbolic expressions and categorical
variables. They also typically rely on la-
borious handcoding, have difficulty cop-
ing with uncertainty and change, and
rarely use statistical evaluation of the
quality of specification in terms of its
match to the observed data.

Memory-based reasoning generalizes
traditional nearest-neighbor (NN) proce-
dures used in pattern recognition (see
Dasarathy [ 1991]) and provides a practi-
cal framework for reasoning from stored

data. Note that conventional NN meth-
ods typically use neither adaptive dis-
tance metrics nor local interpolating
functions. The special case of MBR used
in control applications often uses local
functional approximation methods such
as locally weighted regression (see Moore
et al. [1995]). These methods typically do
not use sophisticated model-based adap-
tive distance functions.

Recently, several researchers in statis-
tics have independently suggested adap-
tive kernel methods that bear a strong
similarity to MBR, another indication of
the usefulness of the paradigm. This work
in statistics is primarily concerned with
classification and function approximation
rather than general query answering or
data mining. However, the motivation is
similar.

Another recent relevant development
is the emergence of case-based decision
theory in economics. Case-based decision
theory defines the “subjective utility” of a
state as a statistical kernel function ap-
proximation to expected utility and, like
MBR, is motivated by the need to
reconcile decision theory and traditional
theories of rationality with the practical
reality of resource-bounded intelligent
agents, in this case humans. Finally,
database researchers also are beginning
to realize the potential of this methodol-
ogy for data-mining applications.

To summarize, the memory-based rea-
soning approach attempts to marry the
strengths of probabilistic reasoning with
the computational advantages of case-
based reasoning. Although conventional
case-based reasoning methods require
hand-coding of cases, have not been rig-
orously evaluated subject to statistical
criteria, and are unlikely to scale up as
the complexity of the domain is in-
creased, MBR relies on adaptive model-
induced distances that are known to
improve the statistical performance and
scalability of NN methods.

Memory-based reasoning has been used
successfully in a number of domains such
as classification of news articles [Masand
et al. 1992], classification of census data

[Creecy et al. 19921, software agents
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[Maes and Kozierok 1993], computa-
tional biology [Zhang et al. 1992; Cost
and Salzberg 1993], and robotics [Moore
et al. 1995], and a number of other
applications.

This review has focused on applica-
tion-oriented M13R rather than its cogni-
tive interpretation. Discussion of a cogni-
tive perspective is precluded by the
length requirements of this review, but
see Waltz [1990]. The authors urge read-
ers to contrast Allen Newell’s “symbol
hypothesis” with MBRs nature—incre-
mental, model-based, constantly mutat-
ing in response to current beliefs, goals,
and experiences.

Much research must still be done to
understand fully the relative capabilities
and limitations of the outlined methodol-
ogy. The MBR proposal shares the goals
of machine learning, namely, shifting the
focus in AI research to activities in which
most of the burden can be put on hard-
ware and algorithms for adaptive
domain-independent reasoning from data
that do not require significant input and
costly labor from human experts and
programmers. Currently available pre-
liminary experiments with MBR give an
optimistic prognosis for the success of
this a paradigm.
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